Extensions 1→N→G→Q→1 with N=C32×Dic5 and Q=C2

Direct product G=N×Q with N=C32×Dic5 and Q=C2
dρLabelID
C3×C6×Dic5360C3xC6xDic5360,93

Semidirect products G=N:Q with N=C32×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×Dic5)⋊1C2 = C3×S3×Dic5φ: C2/C1C2 ⊆ Out C32×Dic51204(C3^2xDic5):1C2360,59
(C32×Dic5)⋊2C2 = C3×D30.C2φ: C2/C1C2 ⊆ Out C32×Dic51204(C3^2xDic5):2C2360,60
(C32×Dic5)⋊3C2 = C3×C5⋊D12φ: C2/C1C2 ⊆ Out C32×Dic51204(C3^2xDic5):3C2360,63
(C32×Dic5)⋊4C2 = C3⋊S3×Dic5φ: C2/C1C2 ⊆ Out C32×Dic5180(C3^2xDic5):4C2360,66
(C32×Dic5)⋊5C2 = C30.D6φ: C2/C1C2 ⊆ Out C32×Dic5180(C3^2xDic5):5C2360,67
(C32×Dic5)⋊6C2 = C15⋊D12φ: C2/C1C2 ⊆ Out C32×Dic5180(C3^2xDic5):6C2360,70
(C32×Dic5)⋊7C2 = C32×C5⋊D4φ: C2/C1C2 ⊆ Out C32×Dic5180(C3^2xDic5):7C2360,94
(C32×Dic5)⋊8C2 = D5×C3×C12φ: trivial image180(C3^2xDic5):8C2360,91

Non-split extensions G=N.Q with N=C32×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×Dic5).1C2 = C3×C15⋊Q8φ: C2/C1C2 ⊆ Out C32×Dic51204(C3^2xDic5).1C2360,64
(C32×Dic5).2C2 = C15⋊Dic6φ: C2/C1C2 ⊆ Out C32×Dic5360(C3^2xDic5).2C2360,71
(C32×Dic5).3C2 = C32×Dic10φ: C2/C1C2 ⊆ Out C32×Dic5360(C3^2xDic5).3C2360,90
(C32×Dic5).4C2 = C30.Dic3φ: C2/C1C2 ⊆ Out C32×Dic5360(C3^2xDic5).4C2360,54
(C32×Dic5).5C2 = C3×C15⋊C8φ: C2/C1C2 ⊆ Out C32×Dic51204(C3^2xDic5).5C2360,53
(C32×Dic5).6C2 = C32×C5⋊C8φ: C2/C1C2 ⊆ Out C32×Dic5360(C3^2xDic5).6C2360,52

׿
×
𝔽